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Table 1 presents a compilation of the standard 
deviations calculated using the two methods. We 
decided to redetermine the values reported by RWS 
since we found some inconsistencies in their original 
paper [for instance, the ratio tr(rm)/o'(P) for entry v 
was 1.8 r,,, (rad) while it should be close to 1.0 Zm 
(rad)]. Since individual tr(0i)'s are not available in 
the original references, we had to calculate them also. 
For the calculations we used the original positional 
parameters and their e.s.d.'s and the method of 
Shmueli (1974). From a comparison of the standard 
deviations calculated with the two methods, three 
cases can be distinguished (Table 1): (i) O'Fs'S and 
trLs'S are roughly the same (entry ii); (ii) low-precision 
observations fit the model very well (entry v); and 
(iii) precise observations give very poor fit (entry vii). 

2 , As discussed above, the O'LS S are a measure of the 
fit between the real and calculated worlds. Another 
measure of this agreement in the LS formalism is the 
conventional R factor. Entries vii and ix of Table ! 
show that R is sensitive to both systematic and ran- 
dom errors. As pointed out by RWS, the departure 
of the Ao and A~ coefficients of their Fourier series 
[see (1) of RWS] from 0 furnishes the FS method with 
a measure of the deviation from the ideal pseudorota- 
tion description. Table 1 reports the Ao and A~ values 
for each entry. Although it is possible to trace a very 
poor fit by the large values of [,40 and A I (entry vii), 

it is in general not obvious how to establish the 
discrepancy between the observations and the model 
from individual Ia0l and Ia,I values, and how to 
compare the deviations for different systems. It seems 
that the R factor provides a more convenient measure 
of the deviation from the ideal pseudorotation 
description. 
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Abstract 

Several simple rules, Rano,4, Rano,5, Rano, 6 and Rano,7, 
have been derived on the basis of the mathematical 
and physical characteristics of anomalous dispersion 
experiments that permit the estimation of values for 
triplet phase invariants. They apply to two- 
wavelength experiments and concern a variety of 
values defined in terms of the real and imaginary 
corrections to atomic scattering factors. The rules 
apply to the case of a single type of predominant  
anomalous scatterer. The generalization to more than 
one type of predominant  anomalous scatterer is also 
described. Test examples show that large numbers of 
invariants may be evaluated by these means with 
reliabilities that, in certain circumstances, are at a 

potentially useful level, but the ultimate applicability 
depends, of course, on the reliability of the experi- 
mental data. The only information required besides 
the measurements of the diffraction intensities is the 
chemical composition of the anomalously scattering 
atoms. If there is more than one type of predominant  
anomalous scatterer, information concerning the rela- 
tive proportion of the different types is also required. 

Introduction 
In a previous article (Karle, 1984b), rules were presen- 
ted for selecting triplet phase invariants whose values 
are close to certain anticipated values. The rules arise 
from considerations of a mathematical and physical 
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nature that apply to the anomalous dispersion tech- 
nique and concern anomalous dispersion data collec- 
ted at a single wavelength. In this article, new rules 
will be developed that apply to anomalous dispersion 
data from a multiwavelength experiment. It will be 
seen that the same sort of mathematical and physical 
characteristics that provide the basis for the rules for 
single-wavelength experiments also provide the basis 
for the rules for multiwavelength experiments. 

The characteristics of interest concern observations 
related to the differences of the magnitudes of selected 
types of structure factors and also the expected values 
of triplet phase invariants associated with the struc- 
ture of the anomalous scatterers. In order to be able 
to estimate values for the triplet phase invariants in 
this approach, when there is only one predominant 
type of anomalous scatterer, it is only necessary to 
know the chemical nature of the predominant 
anomalous scatterers, not their number, the positions 
they occupy nor the occupancy of the positions that 
they occupy. If there is more than one predominant 
anomalous scatterer, an estimate of their number is 
needed. 

The results to be obtained here for a multiple- 
wavelength experiment are simple rules for selecting 
triplet phase invariants whose values are near some 
particular predetermined values. The rules are similar 
to those for a single-wavelength experiment and are 
to be combined with them to enhance the usefulness 
of a multiple-wavelength experiment. 

Conceptual basis 

The concepts that form the basis for the rules of 
interest are illustrated in Fig. 1. This figure provided 
the basis for the formulation of three rules appropri- 
ate for a single-wavelength experiment (Karle, 
1984b). For the multiwavelength experiment con- 
sidered here, the symbolism represents four additonal 
cases (m = 4-7), listed in Table 1. The quantity Fx~ 
is the structure factor associated with a measured 
intensity at wavelength Ap and includes the contribu- 
tion from anomalous dispersion, F~ is the corre- 
sponding structure factor when the contribution from 
anomalous dispersion is omitted and F~,h is the cor- 
responding structure factor that represents only the 
contribution from anomalous dispersion at 
wavelength Ap. The quantities are related by 

F~r ~ = F~ + F~,h. (1) 

It follows from (1) that for all the cases in Table 1 

m~71,h -" m~2,h  -~- m~73,h • (2 )  

The atomic scattering factor for the qth atom that 
scatters anomalously is given by 

fq,h= f q, h + f'q + if~, (3) 

where fq, h is the normal atomic scattering factor and 
f~ and fq are the real and imaginary parts of the 
anomalous correction, respectively. 

The insights provided by Fig. 1 have already pro- 
vided the basis for the derivation of the rules for 
evaluating triplet phase invariants in a one- 
wavelength anomalous dispersion experiment (Karle, 
1984b). The insights are also applicable to multiple- 
wavelength experiments. For convenience, the 
characteristics of Fig. 1 are repeated here. 

The solid lines forming the closed triangle in Fig. 
1 represent the vector equation (2), with the pre- 
subscript m omitted. Given, for example, the vector 
;~,h as in Fig. 1, the dotted line of radius 1~2,hl could 
be a possible location for ;~2,h, but not necessarily. It 
would not be possible if the dotted line connecting 
this vector with ;~,h would have to have a magnitude 
that exceeds the maximum possible value for 1~3,~1. 
The implication of this observation is that if the largest 
differences II are selected from a data set, 
they would be associated with the largest possible 
values of 1~3,hl and ~l,h and ~2 ,h  would have phases 
that do not differ greatly. We formalize these observa- 
tions and their implications, as follows. 

I. The largest magnitude differences, II~t,hl-- 
1~:2,hll, are associated with the largest values of the 
magnitudes ] ~3,h[" 

2. Triplet phase invariants associated with the 
largest 1~;3,h;~3,k;~3,<S+~)[ can be expected to have 
values close to zero, especially for simple 'heavy- 
atom' structures. [The triplet phase invariants refer 
to the nonanomalous portion of the scattering, (~,h + 

n n . ~j,k + ~j,<K÷~)), additional phase functions arise from 
the anomalous portion of the scattering and can be 
readily evaluated from appropriate tables.] 

Im 

Re 

Fig. 1. An illustration of the vector equation ~;l,h = ~;2,h "t-~;3,h" 
The largest magnitude differences, II ~,.hl- I~,hll, are associated 
with the largest possible values of 1~3,hl. This case is represented 
by the triangle formed from the solid lines. The placement of 
the dotted line representing alternative position for ~2.h would 
not be possible if the magnitude of the dotted line connecting 
it to ~:l,n would exceed the maximum possible value. This implies 
that, for the largest magnitude differences, the phase angles for 
~l.h and ~2.h do not differ by much. 
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Table 1. Quantities involved in the four cases leading 
to rules for selecting triplet phase invariants in multi- 

wavelength experiments 

The first three cases, which apply to a single-wavelength experi- 
ment, were considered in an earlier paper  (Karle,  1984b). The 
quantit ies m~:~.h, ,.~:2.n and ,,,~:3,h are defined by the corresponding 
entries in colums 2, 3,,4, respectively, for m = 4, 5, 6, 7. 

Case Defining 
m ,.~l,h m'~2,h m,.~3,h Estimates¢ equation 
4 FMh fx2 h F~l h -  f~2 h 6a~z 2 or (15) 

a ~~2 + ~r 
5 Fx, h + Fx2 h 2F-" ~ + ~ .... (23) aAl h ~X2 h ~AIA2 2 or 

+,+ 
~A ia2 2 "+" ~ 

6 F^, h F*2fi ~ ~* +'- Fat h -  F,,fi 8at^22 or (32) +.- 

7 Falh + Fa*2fi:~ 2F~, ~ + ~ *  -'+ --a~h -a& 8~,a22 or (40) -.+ + ~X|X2 2 "71" 

? These estimates are appropriate when only one type of predominant 
anomalous scatterer is present. Otherwise, the estimates would involve 
functions of several 8, one for each type of anomalous scatterer, as discussed 
in the text. 

The asterisk denotes complex conjugate. 

3. For the larger values of II ~ . h l -  1"~2,hH, the phase 
of ~ . h  will differ little in value from the phase of ~2,h. 

Theory 

The analyses to be carried out all depend upon the 
triplet product that follows from (2), 

( m ~ l , h  -- m ~ 2 , h ) ( m ~ l  ,k -- m"~2,k)(m~l  ,(h +k) -- m~2,(h +~-)) 

= ( m,.~3 .h)( m ~ 3 , 0 (  mff3,(~ +~.)), (4) 
where m = 4, 5, 6, 7, as defined in Table 1. The left 
side of (4) may be rewritten 

× exp [i(m~01, h + m~01,k "~- m~0 l,(fi+~))] 

-l, . .~,., ,  ,...%.,, ,,,,.~.(~ +~,1 

× e x p  [i(m~01, h -I- m~0 l,k "~ m~2,(h+k))] 

- I m~:~,h m ~ 2 , k  m ~ t , ( ~  +~)l 

X e x p  [i(mCPl,h + m~O2,k -~- m~i,(h+k))] 

"~lm~;l,h m~2,k  rn~2,(h+k)l 

x exp [ i ( m ~ l , h  + m~2,k "~ m~02,(h+k))] 

-- ]m~2,h m ~ l , k  rn~l,(h+k)[ 

× exp [i(mq~,h + .,qh,k + .,~0 ~,(~+~))] 

x exp [i(m~O2,h + mCP,,k + m~2,(h+k))] 

-If IMP'2, h m~2,k  m'-~'l,(h+~,)l 

x exp [i(,.(PZ.h + .,q~2.k + -,¢~,(S+~))] 

- Ir,,'~,~., -,'~.,. m~.(~+~)l 

× exp [ i(mtp2,h + m~2,k q" m(P2,(h+fi))] • (5 )  

On the basis of observation 3 above, when the 
appropriate magnitude differences are large, the trip- 
let phase invariants in (5) may be replaced by some 
average value, (mq~hk), and then (5) may be rewritten 

(I..;~.d- I m~z.hl)(I m;~,.d- [ m'~2.d) 

exp (i(m(J~hl~). (6) 

By comparing (6) with the right side of (4) and making 
use of observations 1 and 2, the opportunity for 
evaluating (mq~nk) for the four cases listed in Table 1 
will ensue. If desired, the evaluation may be applied 
to those triplet phase invariants in (5) that are associ- 
ated only with the largest products of ~: magnitudes. 
Previous calculations (Karle, 1983) have indicated 
that an increase in accuracy may be achieved in this 
way, although it may not be of any great practical 
significance to do so. 

When there is a single predominant type of 
anomalous scatterer, simple rules for evaluating the 
triplet phase invariants will be obtained. Otherwise 
somewhat more complicated and somewhat approxi- 
mate calculations are involved unless the structure of 
the anomalous scatterers is known. 

Derivation o f  Rano,  4 

We are concerned here with case 4 of Table 1. The 
right side of (4) is now developed for this case. 
According to (1), 

FA,n- F~2n = F~,h-  F~2n. (7) 
We have 

Nano 
f a - ~,h -- Y- f~,j exp (i(~,j) exp (2¢rih. rj), (8) 

j = l  

where Na,o is the number of anomalously scattering 
atoms in the unit cell, 

f ~ (f,2j .2 I/2 a : + f ~ . )  (9)  

6~,j = ta n-l  u~t r,,21j/j/r,2~ ,JJ~ (10) 

and A~ specifies some particular wavelength. 
Equation (8) can be rewritten in terms of the num- 

ber of types of anomalous scatterers, q (the subscript, 
j =  1, is reserved for atoms that essentially do not 
scatter anomalously): 

q+l 
a . " F "  Fa,h = E (fx,j/f~.h) exp(18A,j) j.h, (11) 

j=2 

where f~".h is the normal atomic scattering factor and 
the Fj"h are the structure factors for each type of 
anomalously scattering atom. We express (7) in terms 
of (11), 

q+l 
Q a n 

F~,,h-- Fx2h = Y. (l/f~.u) 
j=2 

x [f~,j exp (i6:,,j) - ~ , j  exp (iS~)]Fj"h. 
(12) 
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Expression (12) can be rewritten as 

q + l  

Fa O, Fx~h= E (f~x-(;Jf~j,n) exp " - ' -  " " - " (taa,~.j)F~.h, (13) 
j = 2  

where 

and 

__ tt v 2 +  f ~ ~ - [ ( f a , j - f ' ; , z i )  ( f ,  _ f ,  )2],/2 (14) 

a ~ ; ~  = tan- '  [ ( f '~a- f~) / ( f '~a- . f '~ ) ] .  (15) 

The product on the right side of (4) can now be given 
in terms of the product of three sums obtainable from 
the right side of (13). As an approximation, the neglect 
of cross terms in the latter product gives 

q + l  

E [ ( f ~ ? ; ~ ) ~ / ~ ~ + ~ ) ]  j:~ 

x exp (i3 a ~;7~)l F~hF~kF~,(a +~)l 

xexp  [i(~07. h +~ ,k  + ~,~+~))], (16) 

where it is expected that, for large values of 
I F~,hF~kF~ff,+r,)l, the triplet phase invariants (~0~,h + 
~,k + ~,(a+~)) will have a value close to zero (observa- 
tions 1 and 2). A test of the appropriateness of the 
type of approximation used in (16) has been carded 
out (Karle, 1984b). There is often only one type of 
predominant  anomalous scatterer. We proceed with 
this assumption. 

With one type of predominant  anomalous scatterer, 
we may replace (16), and avoid the need to make any 
approximation, with 

[ ( ~  7;;~)~/~,~,~f~,~ +~)] 

Xexp(i3a-;f-;~2)lF~,hF~,kF~,(~+r,)l. (17) 

From Table 1, (6) may be rewritten, when m = 4, 

(I F~,d- I F~d)(I F~,d- I F~d) 
×(IF~,(a+a)l-IF~(a+~)l) exp (i(4~hk)- (18) 

We now compare (18) with (17) representing the 
left and right sides of (4), respectively, when m = 4. 
In order for (17) and (18) to be approximately equal, 
the average of the triplet phase invafiants, GOhk), 
should have a value close to 3 ~ 2 u  or 3 a ~ u + c r ,  
depending upon the sign of the triplet product of 
magnitude differences in (18). This leads to the follow- 
ing rule for the largest triple products of magnitude 
differences. 

Rano,4: I f  the sign of  the product of  the largest 
magnitude differences, (I Fx,hl --IF~.I)(I F~,d - IF~2d) x 
(I F~,,~+=~l - I &~÷=~l), is plus, the value of  the associated 
average triplet phase invariant is close to 3($x~422 and, 
when it is minus, the value of  the average triplet phase 
invariant is close to 3tSx~x2 2 + ¢r. 

This rule, in effect, assigns the estimate to all eight 
triplet phase invariants in (5) (when m--4) .  As a 

modification to Rano,4, the estimates may be assigned 
only to those triplet phase invariants that are associ- 
ated with the larger products of structure-factor mag- 
nitudes among the eight possibilities given in (5), 
instead of to all eight of them. Improved accuracy 
may be obtained this way. 

If there is more than one type of predominant  
anomalous scatterer, (16) may be used instead of (17) 
and compared with (18). In order to use (16), at least 
the chemical composition of the anomalously scatter- 
ing atoms would have to be known. From it, the values 
of the I F~.~F~.~F~.~a+=)I could be evaluated approxi- 
mately. If the anomalously scattering structure were 
known, the exact product on the fight side of (4) 
could be computed from the product of three sums 
obtainable from the right side of (13). 

Derivation of  Rano, 5 

We are concerned here with case 5 on Table 1. The 
right side of (4) is now developed for this case. 
According to (1), 

F~,,h + Fa~s-2F'~ = F~,h + F~a~h. (19) 

The right side of(19) is now expressed in terms of(11); 

q + l  

F~tn + F~2n = E (1/fT.n)[f,~,j exp (iSa,j) 
j = 2  

+ f ~ j  exp (ia,z)]F~,h. (20) 

Expression (20) may be rewritten as 

q + l  

F A I h q _ F A 2 h  = ~ a + , +  n • + , +  n '~ '~ (f~,a2j/f~h) exp (taa,a2j)F~,h, (21) 
j = 2  

where 

f a + , +  tt 2 a,a2s = [(f~(,j +fa2j) +(f'a,j+f'a~j)2] u2 (22) 

and 
+ , +  1 t! a,,A2j = tan-  [(f~,j " ' ' +f~2j)/(f'a,j +f~,2J)]- (23) 

This case proceeds similarly to case 4 with (16) and 
(17) replaced by (24) and (25), respectively, 

q + l  
E a + , +  3 n n n [(f~,a2J)/f]~'J']~r,+k)] 

j = 2  

• + , +  It'/ n n x exp 038 ~,~01P~.~ PS,~ F~.~K +~)1 
x exp [i(¢j~h + ~0j~l, + ~'~,¢~+~))] (24) 

and 
a + , +  3 n n n 

[(f~,,,2) /f~,hf~,kf~,ff,+r,)] 
• + , +  n f l  n xexp (138xtx22)[F2,hF2,kF2,(K+r,) [. (25) 

From Table l, (6) may be rewritten when m = 5. 

(IFA,h + F,,hI--21F~,I)(IF,,k + F,~d - 21F~,I) 

x (IF a,<s +~) + F a2<K+r,)l- 2[ F~+d) exp (i(~ @hk)). 

(26) 
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A comparison is now made of (26) and (25) and, in 
order for them to be approximately equal, the average 
of the triplet phase invariants, (5@~0, should have a 

+ , +  + , +  
value close to 3an,n22 or  3an,n22 + I7, depending upon 
the sign of the triplet product of magnitude differen- 
ces in (26). Since I Fn,h + Fa=hl is not directly measurable 
from experiment, in application we use the approxi- 
mation 

IF~,h + Fn=d ~ IFn,d + IF~,d (27) 

with insignificant error since, in the cases of interest, 
the phase of Fn,h differs little from that of Fn=,,. We 
have now the following rule for the largest triple 
products of magnitude differences. 

R~no.5: I f  the sign of the product of the largest 
magnitude differences, (I Fn,hl + I FA2hl- 21Fg]) x 
(l fn,,,l + l Fn: , l -  21F~.l) x (l Fn,~+~)l + l Fn2~+~)l- 21F~,+d), 
is plus, the value of the associated average triplet phase 

+ , +  invariant is close to 3an,n22 and, when it is minus, the 
value of the average triplet phase invariant is close to 

+ , -l- 

3an,n22 + 7r. 
The same type of discussion that follows Rano: 

applies to Rano,5. It is only necessary to change some 
of the equation numbers. For example, if there is 
more than one type of predominant anomalous scat- 
terer, (24) may be used instead of (25) and compared 
with (26). In order to use (24), at least the chemical 
composition of the anomalously scattering atoms 
would have to be known. From it, the values of the 
I F~hF~f~,~s+~l could be evaluated approximately. If 
the anomalously scattering structure were known, the 
exact product on the right side of (4) could be com- 
puted from the product of the three sums obtainable 
from the right side of (21). 

Derivation of Rano, 6 

We are concerned here with case 6 of Table 1. The 
fight side of (4) is now developed for this case. 
According to (1), 

a a *  
Fa,h-- F*~K = Fa,h-- FA:K. (28) 

The fight side of(28) is now expressed in terms of( l  1), 

q + l  

F~,h -- F~r, = g (1/f:"h)[f'~,j exp (/and) 
j = 2  

- f ~ j  exp (--i&~j)]F~h. (29) 

Expression (29) may be rewritten as 

q + l  
rn ¢1" t l + , - -  /1 • + , -  i1 

(fa,n=j/fj, h) exp = (lan,n2j)F~,h, (30) F<h--  Fn~K 
j = 2  

where 

and 

"+'- " " 2+ ' f l  )2],/2 (31) f~,a=j =[(fn , j  + f n2j) ( f  n,.i- 2J 

+ , - -  1 t! t! t I 8 n,n~j = tan-  [(fn,j +'fn~j)/(fn,j -fn~j)]. (32) 

This case proceeds similarly to cases 4 and 5 with 
(16) and (17) replaced by (33) and (34), respectively, 

q + l  
E a + , -  3 n n n 

[(f~,*2J) /fj, hfj, kfj, ff,+rO] 
j=2 

• +- " F" F" xexp(z38n;n=j)lFj, h j,k j,(K+~)I 

x exp [i(q~7, + ~j~,k + ~Pj~,~+~))] (33) 

and 
a + , - -  3 n n n 

[(fa,a~2) /f~,hf~,k.f~,tr,+rO] 

. . . .  +'-"F" F" F" (34) xexp ( l , ) O A , a 2 2 )  I 2 ,h  2 ,k  2,(K+~)I. 

From Table l, (6) may be rewritten, when m = 6, 

(I F,,hl- I g~2d)(I Fn d -  I Fn:l) 
(IFn,<K+~)I-IFn~<~+~)I) exp (i(~q~0). (35) 

A comparison is now made of (35) and (34) and, in 
order for them to be approximately equal, the average 
of the triplet phase invariants, (6Ohk), should have a 

4-,-- + , -  
v a l u e  close to 36~,n,2 or 38n,n~2 + 7r, depending upon 
the sign of the triple product of magnitude differences 
in (35). We have now the following rule for the largest 
triple products of magnitude differences. 

Rano.6: I f  the sign of the product of the largest 
magnitude differences, (I Fnlhl -IF~,d)(I Fn,d - IFn~d) x 
(I Fn,~+~)l - I Fn~<~+~)l), is plus, the value of the associated 

+,- average triplet phase invariant is close to 3an,n22 and, 
when it is minus, the value of the average triplet phase +,- invariant is close to 3an,n~2 + 7r. 

The same type of discussion as that for Rano, 4 and 
Rano.5 ensues. If there is more than one type of pre- 
dominant anomalous scatterer, (33) may be used 
instead of (34) and compared with (35). In order to 
use (33), at least the chemical composition of the 
anomalously scattering atoms would have to be 
known. From it, the values of the ]F~hF~kF~<r,+r,)l 
could be evaluated approximately. If the anomalously 
scattering structure were known, the exact product 
on the right side of (4) could be computed from the 
product of the three sums obtainable from the fight 
side of (30). 

Derivation of Rano, 7 

We are concerned here with case 7 of Table 1. The 
fight side of (4) is now developed for this case. 
According to (1), 

n a *  
F<h+F*2~-2F~=Fn,h+Fn2~. (36) 

The right side of(36) is now expressed in terms of( l  1), 

q + l  

F~,h + Fax~[~ = ~ (1/fj,~)[f~,jexp(iaa,j) 
j = 2  

+f~2j exp ( -  iaA~)]F~',. (37) 



J. KARLE 371 

Expression (36) may be rewritten as 

q+l  
F,.h + F~,~h = ~ a - , +  n • - , +  n a (f~x2j/ f j ,  h) exp (l~x,x2j)F~h, (38) 

j = 2  

where 

and 

a - - , +  t! t! 2 f;ttx2j = [ ( f x , j - - f x 2 j )  +(f'a,j +ftx2j)2]l/2 ( 3 9 )  

- - , +  - - I  ?! t! t ! 8x ,~ j= tan  [(f~,.j-f~,~j)/(f'a,j +f~2j)]. (40) 

This case proceeds similarly to cases 4-6 with (16) 
and (17) replaced by (41) and (42), respectively, 

q + l  
E a- - ,+  3 n n n [(f~,x~j)/f~hf~'kf~,(r,+r,)] 

j = 2  

• - - , +  I1 12 rl × exp 03 ~ ~,~j)l F~,, Fj,~Fj,~K+~)I 

×exp [i(~j~,h +~,k  + ~.(~+~))] (41) 

and 
a - - , +  3 n n n 

[(f~,a22) /f~,hf~,kf~,(r,+r,)] 

× exp 038a.a22)lFE,hFE,kFE,ff,+r,)l." -'+ " " " (42) 

From Table l, (6) may be rewritten when m = 7, 

(I Fx,h + F*2KI- 21Fgl)(I F~,k + F*~d- 21FT, I) 

x (I Fa,(r~+r,) + * FA2(h+k)l- 21F~+d) exp (i(7 t ~ h k )  ) .  

(43) 

A comparison is now made of (43) and (42), and, in 
order for them to be approximately equal, the average 
of the triplet phase invariants, (7~hk), should have a 

--,-t- - - , +  value close t o  38x~x22 o r  38x~x22 + I7", depending upon 
the sign of the triplet product of magnitude differ- 
ences in (43). Since I Fa,h + F*~K[ is not directly measur- 
able from experiment, in application we use the 
approximation 

IFa,h + F*2KI "" IF~,nl + IF~KI (44) 

with insignificant error since, in the cases of interest, 
the phase of Fa,h differs little from that of F*2K. We 
have now the following rule for the largest triple 
products of magnitude differences: 

R a n o ,  7" If the sign of  the product of  the largest 
magnitude differences, (IF~,d + l F ~ d -  21Fgl) × 
(I FA,kl +lF~ : l  - 21F~, I)(I F~,t~ +~)l +lFa~(u +k)l - 2lEg +d), 
is plus, the value of  the associated average triplet phase 

--,..F invariant is close to 38~,~22 and, when it is minus, the 
value of  the average triplet phase invariant is close to 
38~x~2 + rr. 

If there is more than one type of predominant 
anomalous scatterer, (41) may be used instead of (42) 
and compared with (43). In order to use (41), at least 
the chemical composition of the anomalously scatter- 
ing atoms would have to be known. From it, the values 
of the ]FT, uF~,kF~(K+~)I could be evaluated approxi- 
mately. If the anomalously scattering structure were 

Table 2. Estimates o f  values of  triplet phase invariants 
from anomalous dispersion by sulfur in quinidine sulfate 
at two wavelengths, Cr Ka and Cu Ka (m = 4, 5, 6, 7) 

Errors  a n d  ave rages  are  b a s e d  o n  the  correc t  v a l u e s  o f  the  ave rage  

t r ip le t  p h a s e  i n v a r i a n t s  (6). Phases ,  ~h, for  w h i c h  Ifhl < l0  were  
no t  i n c l u d e d  in  the  c a l c u l a t i o n s .  

Actual Average 
Number Number of Case average error 
of data invariants m Estimate value (rad) 

4280 50 4 - 1.85 - 1.85 0.35 
4280 50 4 ! .29 1.21 0.34 

670 45 4 - 1-85 - 1.89 0.67 
670 55 4 1.29 1.02 0-59 

4280 52 5 -2.73 -2 .78  0-35 
4280 48 5 0.41 0.44 0.35 

670 47 5 -2.73 -2.91 0-77 
670 53 5 0.41 0.36 0.57 

4280 52 6 - 1.67 - 1.69 0.37 
4280 48 6 1.47 1.41 0.36 

670 49 6 -1 .67 -1.61 0.67 
670 51 6 1.47 1.32 0.53 

4280 96 7 2.10 1.77 0.39 
4280 4 7 - 1.04 - 1.32 0.28 

670 75 7 2.10 1.64 0.63 
670 25 7 -1 .04  -1.01 0.54 

known, the exact product on the right side of (4) 
could be computed from the product of the three 
sums obtainable from the right side of (38). 

Test calculations 

Model calculations were performed on exact data 
computed from the coordinates of quinidine sulfate, 
(C20H25N202)2SO4.2H20, (Karle & Karle, 1981) 
which crystallizes in space group P2~ and on exact 
data for cytochrome c550.PtC12- from Paracoccus 
denitrificans (Timkovich & Dickerson, 1976). In the 
test calculations on quinidine sulfate, the source of 
anomalous dispersion was considered to be solely the 
sulfur atom. Products of magnitude differences, as 
appear in (18), (26), (35) and (43), were generally 
composed from the 300 largest magnitude differences 
and ordered with the largest product first. In Table 
3, when 500 invariants were computed, the 800 largest 
magnitude differences were used. The values of hun- 
dreds of triplet phase invariants were estimated for 
cases 4, 5, 6 and 7 and the results are shown in Tables 
2 and 3. The tables include the number of independent 
data used in the calculations. For acentric reflections, 
the value of lEd is independent of that for I F~l when 
anomalous dispersion is taken into account. In the 
evaluation of the average magnitude of error, the 
estimated values as obtained from the appropriate 
angles listed in Table 1, for example, were compared 
with computed values of the average of the eight 
invariants occurring in the general expression (5), 
(m~hk). The two wavelengths used in the calculations 
were'Cr Ka and Cu Ka. 

For Table 2, the I fgl required for cases 5 and 7 
were computed exactly. In contrast, for Table 3, the 
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Table 3. Estimates of values of triplet phase invariants from anomalous dispersion by sulfur in quinidine sulfate 
at two wavelengths, Cr Kot and Cu Ka (m = 5, 7) 

The calculations concern cases m = 5 and 7 and differ from those in Table 2 because the [F~[ required for cases m = 5 a n d  7 were computed 
here from (45). Errors and averages are based on the correct values of  the average triplet phase invariants (6). Phases, ~Ph, for which 
led < 10 were not included in the calculations. 

h f o r  A c t u a l  Average 
Number Number of  Case, computation average error 
of  data invariants m of  I Fgl Estimate value ( r a d )  

4280 65 5 Mo  K a  - 2 . 7 3  - 2 . 5 5  0.35 
4280 35 5 Mo K a  0.41 0.75 0-43 
4280 82 5 Cu K a  -2 -73  -2"03  0-74 
4280 18 5 Cu Ka 0"41 1"25 0-85 
4280 90 5 Cr  K a  - 2 . 7 3  - 1-92 0-85 
4280 10 5 Cr  K a  0.41 1-25 0-85 
4280 36 7 Mo  K a  - 1.04 - 0 . 8 4  0.44 
4280 464 7 Mo K a  2.10 1"96 0"56 
4280 500 7 Cu K a  2" l0 3"41 1-41 
4280 500 7 Cr  Ka 2.10 3.46 1.84 

Table 4. Estimates of values of triplet phase invariants from multiple-wavelength anomalous dispersion data at 
2.5/~ resolution for cytochrome c550.PtCl 2- 

Errors and average values are based on the correct values of  the average triplet phase invariants (6) .  

A c t u a l  

Number of  Source of  average Error 
R u l e  i n v a r i a n t s  h i A2 [F~ 1" Estimate value ( r a d )  

Rano, 4 238 Cu Ka  Mo  K a  - -  - I "73 - ! "53 0"81 
Rano. 4 243 Cu K a  Mo K a  - -  1.41 ! "7 i 0-79 
Rano. 4 244 Cr  K a  Cu K a  - -  - I "90 - 1 "61 0.76 
Ra,o. 4 256 Cr  K a  Cu K a  - -  1-24 1.59 0.82 
Ra,o. 5 178 Cu K a  Mo  K a  Ag K a  - 0 . 1 9  -0 -55  0.69 
Rano. 5 204 Cu K0t Mo K a  Ag K a  2"95 2"50 0"75 
Rano, s 216 Cr  K a  Cu K a  Mo K a  -0"  18 - 0 . 5 7  0.72 
Rano. 5 277 Cr  Ka Cu K a  Mo K a  2.96 2-61 0-85 
Rano. 6 237 Cu Kt~ Mo  K a  - -  -1"01 -0"74  0"61 
R . . . .  6 263 Cu K a  Mo K a  - -  2"13 2"59 0"75 
R . . . .  6 257 Cr  K a  Cu K a  - -  - 1.67 - 1.70 0-83 
Rano, 6 243 Cr  K a  Cu K a  - -  1"47 1"35 0.77 
Rano. 7 175 Cu K a  Mo K a  Ag K a  -2"57  -2"43  0"55 
R . . . .  7 325 Cu K a  Mo K a  Ag K a  0.57 0.74 0-62 
R . . . .  7 300 Cr  K a  Cu K a  Ag K a  - I "61 - 1-56 0-60 
Ra,o.7 200 Cr  K a  Cu K a  Ag K a  1-53 1-62 0-70 
Rano. 7 359 Cr  K a  Cu K a  Mo K a  - 1 "61 - I "99 0"83 
Rano, 7 141 Cr  K a  Cu K a  Mo K a  1.53 0-69 I-17 

* Entries indicate the wavelength at which (45) was used to compute [Fg[. 

[F~[ were computed at a variety of wavelengths from 
(Karle, 1984a) 

IFgl--0.5 W~(IF~ A +lF~l), (45) 
where Ap represents any particular wavelength, and 

J=~- = (46) 
~ o  Nano 

Wx~ = "f2h + E [(fTh +fj)2 +fj,2] 
j = ,  j = l  

As would be expected, the errors increase appreciably 
as the wavelength for computing (45) increases from 
that of Mo Ka to that of Cr Ka. The calculations are 
seen to be quite poor for this example in case 7 when 
the IFgl are computed with Cu Ka or Cr Kt~ radi- 
ation. The good results with Mo Kt~ radiation are 
expected because of the smallness of the anomalous 

dispersion correction for S at the wavelength of 
Mo Ka radiation. 

Estimates of the values of triplet phase invariants 
and their average errors for cytochrome c550.PtCl 2- 
for cases 4, 5, 6 and 7 are shown in Table 4. The 
estimates concern data at 2.5/~ resolution. The Pt 
atom is the predominant anomalous scatterer and its 
real and imaginary corrections to the atomic scatter- 
ing factor were used for determining the values of 
the triplet phase invariants. The anomalous contribu- 
tions from the Fe, S and C1 atoms were neglected. 
Estimated values were obtained from the appropriate 
angles listed in Table 1. Errors and average values 
were obtained from the correct values of the average 
triplet phase invariants, (m~hk). 

As would be expected, Table 4 shows that improved 
accuracy is obtained when IF~, I is computed at the 
shorter wavelength, Ag Ka rather than Mo Ka. 
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Additional calculations that do not appear in Table 4 
indicated that for cytochrome c550.PtC142- errors are 
smaller for a smaller spread between A~ and A2. 
Specifically, larger errors than those shown for Rano,4 
and Rano,7 were obtained in calculations in which A~ 
was Cr Ka and '~2 w a s  Mo Ka. 

The experimental sensitivity, however, depends on 
the size of the magnitude differences. Calculations 
with cytochrome c550.PtCl 2-, having h i and A2 Cu Ka 
and Mo Ka, respectively, instead of Cr Ka and 
Mo Ka, respectively, gave a range of values for the 
largest magnitude differences, generated by the for- 
mer pair of wavelengths, approximately 0 to 50% 
smaller than those generated by the latter pair of 
wavelengths. Typical numbers for application of 
Rano, 7 are 200-1800 for the magnitudes of the structure 
factors and 20-40 for the largest differences. 

Concluding remarks 

Calculations have been performed to test the rules 
Rano,4, Rano,5, Rano, 6 and Rano,7, rules that permit the 
estimation of the values of triplet phase invariants in 
a two-wavelength anomalous dispersion experiment. 
However, the rules have been applied only to exact 
data and this gives rise to questions concerning pos- 
sible applicability. Evidently much depends upon the 
accuracy of the experimental data, a matter for 
detailed study. 

There are a number of ways of using anomalous 
dispersion data to obtain phase information. These 
include the many established procedures that have 
been used for years (Ramaseshan & Abrahams, 1975), 
recent developments in extending the range of appli- 
cations (Hendrickson & Teeter, 1981) and new ones 
essentially untested with respect to experimental data 
that derive from an exact algebraic analysis (Karle, 
1980), applications in probability theory (Heinerman, 
Krabbendam, Kroon & Spek, 1978; Hauptman, 1982; 
Giacovazzo, 1983) and analyses of single-wavelength 
experiments (Karle, 1984b). Optimal strategies for 
the use of the various techniques await future investi- 
gations. 

In order to apply the results of this paper to the 
case of one predominant type of anomalous scatterer, 
it is only necessary to know the chemical identity of 
the anomalous scatterer. In the case of more than one 
type of predominant anomalous scatterer, it is also 

necessary to have an estimate of the amount of each 
anomalous scatterer. 

A probabilistic approach to the development of 
formulas for evaluating triplet phase invariants com- 
posed of a mixture of phases defined for anomalous 
dispersion data at two different wavelengths or for 
isomorphous substitution has been given recently by 
Pontenagel, Krabbendam, Peerdeman & Kroon 
(1983). This is somewhat different from the way triplet 
phase invariants are generated here, although there 
is some comparison since the phase associated with 
IF~,hl+lF~2hl, for example, derives from quantities 
generated in a two-wavelength experiment, whereas 
the phase associated with I Fgl derives from a quantity 
that is independent of wavelength. The probabilistic 
approach of Pontenagel et al. is, however, more 
closely akin to a method for developing formulas for 
estimating triplet phase invariants that combines the 
results for isomorphous replacement (Karle, 1983) 
and for anomalous dispersion (Karle, 1984b) with the 
ones in this paper. The combinations lead to a very 
large number of formulas for estimating triplet phase 
invariants. A paper on this subject is in preparation. 

I wish to thank Mr Stephen Brenner for writing 
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tions reported here. 
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